Cauchy-Riemann Equations in Polar Form

Apart from the direct derivation given on page 35 and relying on chain rule, these equations can also be obtained more geometrically by equating single-directional derivative of a function at any point along a radial line and along a circle (see picture):

Derivative along radial line:

$$
\frac{d f}{d z}=\frac{\partial f}{e^{i \theta} \partial r}=e^{-i \theta} \frac{\partial f}{\partial r}=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

Derivative along a circle:

$$
\frac{d f}{d z}=\frac{\partial f}{i r e^{i \theta} \partial \theta}=-\frac{i e^{-i \theta}}{r} \frac{\partial f}{\partial \theta}=-\frac{i e^{-i \theta}}{r}\left(u_{\theta}+i v_{\theta}\right)=\frac{e^{-i \theta}}{r}\left(v_{\theta}-i u_{\theta}\right)
$$

Equate the real and imaginary parts to obtain the result:

$$
\begin{aligned}
& u_{r}=\frac{1}{r} v_{\theta} \\
& v_{r}=-\frac{1}{r} u_{\theta}
\end{aligned}
$$

